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Thermal noise can facilitate energy conversion by a ratchet system
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Molecular motors in biological systems are expected to use ambient fluctuation. In a recenfRiger
Rev. Lett.80, 5251(1998], it was shown that the following question was unanswered: Can thermal noise
facilitate energy conversion by ratchet system? We consider it using stochastic energetics, and show that there
exist systems where thermal noise helps the energy convefS»863-651X99)01110-1

PACS numbds): 05.40.Ca, 87.16:e

Molecular motors in biological systems are known to op- Let us consider an overdamped particle in an “oscillating
erate efficientlyf 1—4]. They convert molecular scale chemi- ratchet,” where the amplitude of the one-dimensio(idD)
cal energy into macroscopic mechanical work with high ef-ratchet potential is constant, but the degree of symmetry
ficiency in water at room temperature, where the effect oforeaking oscillates at frequenay (Fig. 1). The Langevin
thermal fluctuation is unavoidable. These experimental factgquation is as follows:
lead us to anticipate the existence of the system where ther-

mal noise helps motor operation. Determining the mecha- d_X: — N +&(t) (1)
nism of these motors is useful not only in biology but also in dt X ’
statistical and thermal physics.

Recently inspired by observations of the molecular mo- V(x,1)=Vp(x,t) +1x, @)

tors, many studies have been performed from the V'eWpom\}vherex, |, andV,(x.t) represent the state of the system, the

of statistical physics. Much has been studied in ratchet mOdlbad and the ratchet potential, respectivéfig. 2). The
els[5-7] to determine how the directed motion emerges Owwhité and Gaussian random fo’rce(;t) satisfy {g(tj)=o
of nonequilibrium fluctuation. One of the best known works and(£(t)£(t'))=2e8(t—t'), where the angular brackets
among these ratchet models was by Magnd8goHe stud- o510 the ensemble avera,lge. We use thernnity=1. We

ied th_e forced thermgl ratch_et, and claimed tha_\t the_re IS assume that the potentis(x,t) always has basins and thus
a region of the operating regime where the efficiency is 0py particle cannot move over the potential peak without ther-

timized at finite temperatures.” His claim is interesting be- a1 noise. The ratchat (x,1) is assumed to satisfy the tem-
cause thermal noise is known to usually disturb the operatiogorally and spatially pgriodic conditions

of machines. However, it was recently revealed that this

claim was made incorrectly9], because it was not based on Vp(X,t+T)=Vy(x,1), (3)
analysis of the energetic efficiency but only on that of the
probability current, as most of the studies of ratchet systems Vp(x+L, 1) =V(x,t), (4)

were. The insufficient analysis was attributed to the lack of

systematic methods of studying energetics in systems devhereL is a spatial period of the ratchet potential, and
scribed by the Langevin equation. Recently, a method called (=27/ ) is a temporal period of the potential modulation.
stochastic energetics was formalized, where the heat was d&brough potential modulation, energy is introduced into the
scribed quantitatively in the framework of the Langevin system and the system converts it into work against the load
equation[10]. Using this method, some attempts to discus§15]'

the energetics of these systeiisl—14 have been made.

Through the energetic formulation of the forced thermal YLixt)

ratchef 9] using this stochastic energetics, the following was

shown: The behavior of the probability current is qualita- vl
(]

tively different from that of energetic efficiency. Thermal
noise doesot contribute to energy conversion by the ratch-
eting, at least under the conditions in which the claim was
made.

Therefore, it was revealed that the following question had
not yet been answered: Can thermal noise facilitate operation
of the ratchet? In this paper, we will show that thermal noise

certainly can facilitate the operation of the ratchet. 0 [X
FIG. 1. Oscillating ratchet potentiad,(x,t). The ratchet poten-
*Electronic address: fumiko@cmpt.phys.tohoku.ac.jp tial changes continuously between solid line and broken line with
Electronic address: hondou@cmpt.phys.tohoku.ac.jp the time periodl. The amplitude of the ratchet keeps const&fat,
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FIG. 2. Snapshot of the potent¥(x,t) (solid line). The broken
line represents the load terix

The Fokker-Planck equatidd6] corresponding to Eq1)
is written

JP(X,t) B dJ(x,1)
at ax
PP (x,1)

aV(x,t)P ol +
X xt)]+e ENG

J
oX

©)
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~ V(T) T L
<W>=< JV(O) dV(X(t),t)> =1 fo dtfO dxJ(x,t)=W,
(12

where W represents the work against the load. Also, using
Egs.(2), (5), and the periodic condition€Egs. (3), (4), (7),
and(8)], the ensemble average Bf, is given as

T IV(X(1),t)
@~ [

(Tt _avp(x,t))
—fodtfo dx( —ox J(x,1)

X

Ein . (13)

Therefore, we obtain the efficienay of the energy conver-
sion from the input energ;, into the workW as follows:

W | [odtf5dxJ(x,t)
T En TRAtSaX{—[Vo(x, D 1/ax}I(x,1)

(14

This expression can be estimated simply by solving the
Fokker-Planck equatiofEq. (5)].

We solve Eq.(5) numerically with the following ratchet
potential as an example. It satisfies E¢3), (4), and the
condition that the degree of the asymmetry oscillates but the

where P(x,t) and J(x,t) are a probability density and a amplitude of the ratchet is constant. It will turn out that the
probability current, respectively. We apply the periodic result does not depend on the detailed shape of the potential.

boundary conditions oR(x,t) andJ(x,t),
P(x+L,t)=P(x,t), (6)
J(x+L,t)=J(x,t), (7)
where P(x,t) is normalized in the spatial peridd Except
for transient time P(x,t) and J(x,t) satisfy the temporally
periodic conditions
P(x,t+T)=P(x,t), (8)
J(X,t+T)=J(x,t). (9

According to the stochastic energetick0], the heatQ
released to the heat bath during the perfoid given as
~ x(T) dx(t)
o[-
x(0)

—T+§(t))]dx(t). (10

Inserting Eq.(1) into Eq.(10), we obtain the energy balance

equation

~ TV (X(1),t
Q:f M (12)

V(T)
dt— f dV(x(t),t).
0 at V(0)

The first term on the right-hand side is the enegythat the

The ratchet potential is

27X )
T+A(t)sm

1
Vp(X,t)= EVO(Sin

X +1], (15

L L

2mX [ 2mX
—+Cysinf —

whereA(t)=C,+ Czsin(wt) andV,, C;, C,, C3 are con-
stant.

The results are shown in Fig. 3. We find that the effi-
ciency is maximized at finite intensity of thermal no[$gg.
3(a)]. This shows that thermal noise can certainly facilitate
the energy conversion. What is the reason for the behavior of
the efficiency ? Let us regard the workV and the input
energyE;, as a function of the intensity of thermal noise.
The workW, the numerator of Eq14), has a peak at finite
intensity of thermal noise[Fig. 3(b)] because of the
stochastic-resonance-like behavior of the flow during the pe-

riod T, J=/1dt/5dxJ. In the absence of thermal noise (
=0), the particle cannot move over the potential peak

(which results inJ=0). As the intensity of thermal noise
increases, the effect of nonequilibility emerges and it induces
finite asymmetric flow against the load through the asymme-
try of the ratchet. When thermal noise is large enough (
—), the flow against load is no longer positive, because
the effect of the ratchet disappears in this limit. Therefore,
the flow, and also the work, behave like FigbBas a func-

system obtains through the potential modulation, and the sedlon of thermal noise intensity. The input energy,, the

ond term, fy{PdV(x(1),1), is the workW that the system
extracts from the input enerdy,, during the periodl. The

ensemble average &Y is given using Eqs(2), (3), and(8)
as

denominator of Eq(14), remains finite at the limite—0

[Fig. 3(c)], where all input energy dissipates because the os-
cillation of the local potential minimum makes finite local
current even in the absence of thermal noise. Therefore, the
efficiency begins with»=0 at e=0 and increases as the
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FIG. 3. Energetic eff|C|_ency,n=W/Ein, Of. th? osm_llatlng FIG. 4. Energetic efficiencyyp=WI/E;,, of the forced thermal
ratchet system as a function of thermal noise intensity, whereratchet as a function of thermal noise intensity, whikgl L2
Vo/wlL?=0.01, I/wL=0.00002,C;=0.3, C,=0.3, andC;=0.3. Y @

. . _ =1.0, /oL =0.001, and|F¢]ma/owL=1.0. (a) Efficiency », (b)
(a) Efficiency 7, (b) work W, and(c) input energyk;, . work W, and(c) input energyE,..

intensity of thermal noise increases, then disappears as whereV(x), I, andF¢, represent the ratchet potential, load,
—oo, The efficiency has its peak _at f|.n|t£ ~and an external force, respectively. The periodic external
As we have stated above, noise-induced flow and finitgorce F (t) satisfiesFq,(t+ T)=Fq(t) and fgthex(t):o

dissipation in the absence of thermal noise are the cause pf7]. The work W is the same as Eq13), and the input
the noise-induced energy conversion. Thus our finding willenergyg;, is

not depend on the detail of the shapevg{x,t). We expect
that thermal noise can facilitate the energy conversion in a T L
variety of ratchet systems. Em=J’ dtf dXFe(t)I(X,1). a7
Finally, we discuss the forced thermal ratcligl. The o Jo
forced thermal ratchet is a system where a dissipative par-
ticle in a ratchet is subjected to both zero-mean externdn the quasistatic limif9], the probability currend does not
force and thermal noise. The previous paj@presented the depend on the coordinate Thus, when the current over the
first trial that discussed the energetics in the ratchet. For theotential peak(that causesA) vanishes, the local current
analytical estimate, the discussion in that paper was only oManishes everywhergJ(x,t)=J(t)=0]. However, if the
the quasistatic limit where the change of the external force i§ystem is not quasistatic, the behavior changes qualitatively
slow enough. In that case, thermal noise cannot facilitatéFig. 4). In this case, even when the current over the poten-
operation of the ratchet. The energetic efficiency is a monotial peak vanishes at=0, the local current around the local
tonically decreasing function of thermal noise intensity, inPotential minimum still remains finite. Thus there exists fi-
contrast to the oscillating ratchet discussed above. Howevefjte energy dissipation even in the limit-0, which means
one can see that the external force of the forced thermdhat the input energ¥;, still remains a finite value at this
ratchet can also be written by an oscillatory modulating po-imit [Fig. 4c)]. Therefore, the efficiency is found to be zero
tential, when the external force is periodic as in the literaturedt =0, and has a peak at finieg Fig. 4@]. The result is the
[8,9]. It is likely that the difference between the two cases,same as that of the oscillating ratchet. It must be noted that
the oscillating ratchet and the forced thermal ratchet disthe energetics can distinguish the behavior of the efficiency
cussed in that papé®], is attributable to the different con- in the nonquasistatic case from thit in the quasistatic case,
ditions of the two systems, namely, one is quasistatic and thelthough the dependences of the fldware the same in both.
other is not. Thus, we suppose that thermal noise may facili- We have discussed energetics of the ratchet system using
tate the energy conversion in the forced thermal ratchet whethe method of the stochastic energetics, and estimated the
the ratchet is not quasistatic. efficiency of energy conversion. We found that thermal noise
The Langevin equation of the forced thermal ratchet is thesanfacilitate the operation of the ratchet system. The mecha-
same as Eq.l), except for the potentia¥. In this case, the nism was briefly summarized as follows. Through the
potential is ratchet, potential modulation causes noise-induced flow
against the load that results in the work. On the other hand,
potential modulation with finite speed causes a local current
V(X,1) =V,(x) +1IXx—Fg (D)X, (16 around the local potential minimum that causes finite dissi-
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pation even in the absence of thermal noise. Thus the effi-18]. Whether and how the real molecular motors use ther-
ciency is maximized at finite intensity of thermal noise. Themal noise is a subject for future experimentation.

result must be robust and independent of the detail of the ) )

potential because only two factors are essential for the en- We would like to thank K. Sekimoto, J. Prost, A. Parmeg-
ergy conversion activated by thermal noise: one is the noisegiani, F. Jlicher, S. Sasa, T. Fujieda, and T. Tsuzuki for
induced flow, and the other is the finite dissipation in thehelpful comments. This work was supported by the Japanese
absence of thermal noise. Also in the two-state mgd¢l  Grant-in-Aid for Science Research Fund from the Ministry
another type of ratchet system, it was reported quite recentlgf Education, Science and Cultufslo. 09740301 and the
that the efficiency could be maximized at finite temperaturdnoue Foundation for Science.

[1] T. Yanagida, T. Arata, and F. Oosawa, Natdrendon 316, cond-mat/9904322.
366 (1985. [15] In this paper, we discuss the systems that convert mechanical
[2] A. Ishijima, H. Kojima, H. Higuchi, Y. Harada, T. Funatsu, energy into mechanical work, while real molecular motors in
and T. Yanagida, Biophys. J0, 383(1996. biological systems convert chemical energy into mechanical
[3] T. Q. P. Uyeda, S. J. Kron, and J. A. Spudich, J. Mol. Biol. work. Recently, an experiment suggests that the protein can
214, 699 (1990. store the chemical energy from ATP hydroly$i®], the en-
[4] R. Yasuda, H. Noji, K. Kinosita, F. Motojima, and M. ergy of which may be stored in a mechanical way; for ex-
Yoshida, J. Bioenerg. Biomemk29, 207 (1997. ample, by conformational change of the protein. Some models
[5] R. D. Vale and F. Oosawa, Adv. Mat@6, 97 (1990. have been proposed to explain this kind of energy storage
[6] A. F. Huxley and R. M. Simmons, Natuféondon 233 533 [16] H. Risken, The Fokker-Planck Equatior2nd ed.(Springer-
(1971 Verlag Berlin, 1989.
[7] See, e.g., F. Jigher, A. Ajdari, and J. Prost, Rev. Mod. Phys. [17] We consider the low amplitude regini®] where the ampli-
69, 1269(1997, and references therein. tude of Fo(t) is small. In this case, a particle cannot move
[8] M. O. Magnasco, Phys. Rev. Leftl, 1477(1993. over the potential peak without thermal noise, as in the case of
[9] H. Kamegawa, T. Hondou, and F. Takagi, Phys. Rev. 186}t. the oscillating ratchet.
5251(1998. [18] A. Parmeggiani, F. Jicher, A. Ajdari, and J. Prost, Phys. Rev.
[10] K. Sekimoto, J. Phys. Soc. Jp86, 1234(1997). E 60, 2127(1999.
[11] K. Sekimoto and S. Sasa, J. Phys. Soc. &tin.3326(1997. [19] A. Ishijima, H. Kojima, T. Funatsu, M. Tokunaga, H. Higuchi,
[12] M. Matsuo and S. Sasa, Physica(td be published H. Tanaka, and T. Yanagida, C&R, 161 (1998.

[13] T. Hondou and F. Takagi, J. Phys. Soc. Jpn.2974(1998. [20] See, for example, N. Nakagawa and K. Kaneko, e-print
[14] K. Sekimoto, F. Takagi, and T. Hondou, e-print chao-dyn/9903005.



